You are currently browsing the tag archive for the ‘Jan and Dan Duncan Neurological Research Institute’ tag.

by Monica Coenraads

Variations in our genome are what make us unique. It’s also what predisposes or protects us from disease.  For example, you may know people who eat high fat diets and yet have low cholesterol or people who, although they have never smoked, succumb to lung cancer, like Christopher Reeve’s wife, Dana.

I’ve had the opportunity to meet girls with MECP2 mutations and normal X chromosome inactivation that are too high functioning to be diagnosed clinically with Rett Syndrome. These are girls who may walk, run, speak, write, draw, and in some rare instances even speak multiple languages and play an instrument. So what is protecting these individuals from having full-blown Rett?  You guessed it: modifier genes.

Those of you familiar with RSRT’s efforts know that we have been funding a project in the lab of Monica Justice aimed at identifying protective modifiers in mice.  This past summer the Justice lab published the first modifier that suggests that statins (drugs that lower cholesterol) may be treatment options for Rett.   More modifiers are likely to follow.

In the last few years a number of factors have coalesced to make the hunt for modifiers possible in people: 1) the identification of a growing number of individuals with MECP2 mutations who are too high functioning to fit the criteria for a clinical diagnosis of Rett  2) dropping costs for exome sequencing  3) improved bioinformatics which allow for better analysis and interpretation of the vast quantify of data generated from sequencing.

In light of these developments RSRT has awarded $314,000 to Jeffrey Neul at Baylor College of Medicine to sequence the exomes (the protein producing portion of the genome) of high-functioning kids/adults in the hopes that some common variables may point to modifiers which can then become drug targets.

Importantly, the sequencing and phenotypic data will be a valuable resource as it will be deposited into the National Database for Autism Research and available to the scientific community.

We need the Rett community’s help to identify high-functioning individuals who Dr. Neul may not be aware of.
If you think your child may qualify please contact me at

Watch the interview below with Dr. Neul to learn more about this project.

[video transcript]
[video transcript – Chinese]


by Kelly Rae Chi

Rett Syndrome is caused by a variety of mutations in the MeCP2 protein, but in some instances, MeCP2’s end is missing.  A graduate student in Developmental Biology at the Baylor College of Medicine in Houston, Steven Baker, who is also in the medical scientist training program, was sifting through the clinical literature on boys with such mutations when he noticed that a tiny difference in how much of the protein’s tail is shortened—by just three amino acids—seemed to make the difference between decades of life (albeit with Rett-like deficits) and death in infancy.

Steven Baker

Steven Baker

Baker asked his adviser, Huda Zoghbi, whether she thought those extra few amino acids could so dramatically change the clinical progression of Rett.

Huda Zoghbi

Huda Zoghbi

“I don’t know,” Zoghbi, Howard Hughes Medical Institute Investigator and director of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, recalls telling him, because other genetic factors could be contributing the dramatic difference in the progression of Rett. “The only way to know is to make mice that have the two different mutations.”

So they did. One mouse had the end of its MeCP2 cut off at the 270 mark (‘R270X’ mice) while another’s protein was shortened at the 273 mark (‘G273X’ mice). The stories of these mice were reminiscent of the boys Baker had noticed. The R270X mice died prematurely, around the same time as mice with no MeCP2. In contrast, the G273X mice, with their extra three amino acids, survived longer and showed symptoms later, although these features became more severe and the mice died before healthy mice did.

What do those amino acids do? In trying to find out, the scientists have refined their understanding of how MeCP2 works. Their results are published this week in Cell.


A first look at DNA binding:

Researchers know that MeCP2 binds throughout the genome, coating the DNA in neurons more heavily than in other cells, but what exactly it does after that is less clear. It’s thought to turn genes on or off, or alter the overall structure of DNA.

Zoghbi’s team thought that the two truncated forms of MeCP2 might bind to DNA differently — in a way that would help explain the different clinical progressions of the boys — but when they initially looked at several spots within the genome they saw that both forms bound to those spots similarly.

In fact, looking more broadly across the genome the group found that overall binding of the MeCP2 was pretty much the same, and it looked normal. (The latter wasn’t too surprising, though, because the front end of MeCP2 was already known to bind to DNA.) Both mutations also interfered with the normal ability of MeCP2 to repress genes.

Looking more closely at gene expression at various time points in brain development, however, the group found a key difference in the two mutants: at 4 weeks of age, a small group of genes was improperly expressed in the R270X mutant but not in the G273X mutant. Interestingly, most of those genes eventually became misregulated in the G273X group by 9 weeks.

The hook from the animal kingdom:

Meanwhile, the scientists asked evolutionary biologist, Olivier Lichtarge, a Professor at Baylor College of Medicine who uses computational tools to study the evolution of protein sequences, to help them compare the sequences of the protein’s tail across different species (the idea being that any regions of the protein that were highly similar across species might be important for the protein’s function). “We worked with Angela Wilkins in the Lichtarge lab and asked, ‘Is there something in this domain that’s really unique?” says Zoghbi, who is also a Professor at Baylor College of Medicine.

They found that three clusters of MeCP2’s tail were highly conserved across fish, frog, rat, mouse, and human. Shortening MeCP2 at the 273 mark removed the third of those conserved clusters, whereas cutting the tail at the 270 mark deleted the second and third clusters.

What are these clusters in MeCP2’s tail and what do they do? It turns out that they’re called AT-hooks. In 2005, a study by Adrian Bird’s group described the first of those three AT-hooks (which is the one still present in both of Zoghbi’s new models), though its function was unclear.

AT-hooks are regions of a protein that are already well known to bind DNA, however, so the team went back to the idea that the two truncated proteins might differ from one another in how they attached to the genome, even though their initial results had shown that binding was similar. Using a different assay, they found that missing the second AT-hook domain impaired the ability of the R270X to steadily interact with certain sequences in the genome.


The interaction between MeCP2 and DNA:

Our genomes are wound tightly around spool-like proteins called histones; the DNA and histones (together, called chromatin, which looks like beads on a string) are then packed in even more so that it can all fit inside cells. Using an experimental model of compaction in vitro, the team found results suggesting that R270X mice (which, remember, are missing an two AT-hooks instead of one) don’t pack up chromatin as well as 273X mice do.

The initial finding that both mutated forms of MeCP2 bind to DNA are still important though, Zoghbi says. “It tells us that the major binding to DNA happens. That’s the first step.” The researchers think that once the front end of MeCP2 sits on DNA, the AT-hook clusters on its tail come in manipulate the DNA further, likely bending or altering the structure to help it pack further into the cell.

“There were hints previously that MeCP2 might cause a change in the overall conformation of DNA. The new study is probably the most direct evidence,” says Howard Hughes Medical Institute Investigator Gail Mandel, at the Oregon Health and Science University in Portland, who was not involved with the study.

The protein partner ATRX:

When the MeCP2 sits on DNA, and likely alters the way it packs into a cell, there are other molecular partners that come and join it. One of those is the protein ATRX—whose mutations have been linked to Alpha-thalassemia mental retardation syndrome—and Adrian Bird’s lab has previously shown that its interaction with DNA is disrupted in mice missing MeCP2. Zoghbi’s team decided to look at this protein in their new mutant mice.

Compared with the healthy mice and the G273X mice, ATRX goes missing from the tightly packed DNA of neurons earlier in life for the R270X mouse, and this loss mirrors the quicker onset of Rett symptoms. “To us, that was really interesting,” Zoghbi says, “because this change is not because the neurons are sick, it’s because you don’t have MeCP2 functioning properly.”

Studying female mutant mice that are missing a copy of MeCP2, the researchers found those brain cells with no MeCP2 also had less ATRX bound to tightly packed DNA compared to controls. In female mutants with too much MeCP2, an excess of ATRX latched on to DNA. MeCP2’s absence from liver and non-brain organs didn’t affect ATRX binding in those organs, suggesting that MeCP2 has a mechanism that’s specific for the brain.

Future directions:

Taken together, these results suggest that in the brain, the AT-hook clusters on MeCP2’s tail are manipulating DNA in a way that’s crucial for the other protein partners to bind and do their jobs, Zoghbi says.

“This new paper is beginning to shed light on the complexity of this interaction between MeCP2 and ATRX,” says Mandel. In addition, “we don’t know all the other proteins that bind to MeCP2, but the guess would be that there are likely more partners affecting whether genes are on or off.”

Zoghbi’s team hopes to understand how shortening MeCP2’s tail changed chromatin structure without dramatically changing gene expression — as well as the mutation’s affect on brain activity. They also plan to do biochemical and molecular experiments to figure out where ATRX is going and what it’s doing when its distribution is altered in the brain cells of the MeCP2 mutants.

For Zoghbi, the new findings underscore the importance of going back to patients to look for clues about MeCP2’s function. In 1999, Zoghbi first showed that various mutations in MeCP2 caused Rett. “Here we are 14 years later, some of these human mutations are teaching us lessons,” she says. “The variety you get and the breadth of human features you can dissect and go back and study in the mouse are really very humbling.”


Ever wondered why most labs use male Rett mice for their experiments even though the females are the better model? What human symptoms are replicated in the Rett mice? What are some of the surprises these mice have in store for us? What are the complexities of doing well-designed and executed trials in mice? What are some of the pitfalls that the Rett field needs to avoid? What is the potential for the newly unveiled Rett rat? Listen and find out….


Last month brought me to Houston, Texas to attend a fascinating meeting organized by Huda Zoghbi and Morgan Sheng and co-sponsored by RSRT. Entitled Disorders of Synaptic Dysfunction, the event was the inaugural symposium of the recently established Jan and Dan Duncan Neurological Research Institute, directed by Dr. Zoghbi.

The two-day meeting brought together a heterogeneous group of scientists from academia (senior and junior faculty as well as post-docs and graduate students), industry, NIH and other funding agencies.

The focus was not on  a single disease but rather on a group of disorders (Rett, Angelman, Fragile X, autism, Tuberous Sclerosis) that share a common cellular phenotype: abnormal synapse activity.

It’s no surprise that some of the talks that generated the most buzz came from labs that are doing very clinically relevant research. These include the labs of Mark Bear at MIT, working on Fragile X, and Ben Philpot at UNC whose lab works on Angelman Syndrome.

Like Rett Syndrome, Fragile X is a single gene disorder, caused by mutations in a gene called Fmr1. When Fmr1 is mutated, protein synthesis fails to shut down, leading to excess. Some years ago Dr. Bear proposed that compounds which can block a certain type of receptor, mGluR5 (which triggers the burst of synaptic protein synthesis) might counteract over-expression of protein and thereby cancel out the damaging effect of Fmr1 deficiency. His theory has proved correct, and clinical trials of mGluR5 antagonists are currently ongoing at multiple pharmaceutical companies.

I first met Dr. Bear almost a decade ago, when he was just beginning to formulate what is now commonly known as the mGluR5 theory of Fragile X.  His lab is currently funded by RSRT to explore protein synthesis in the Rett mouse models. Dr. Bear hypothesizes that Rett may be due to under-expression of proteins. If his hypothesis holds up, pharmacological manipulations of mGluR signaling will be pursued.

Ben Philpot’s talk also generated excitement. He discussed a high-throughput screen that has yielded a compound which can activate the silenced Angelman Syndrome gene, UBE3A. Dr. Philpot is currently funded by RSRT to pursue a similar approach for the silent MECP2 gene on the inactive X chromosome.

Mike Greenberg spoke about MECP2 and shared unpublished data that has come about from his collaboration with Adrian Bird via the RSRT funded MECP2 Consortium. (More on that in the months to come.)

Jackie Crawley of the NIH gave a brilliant talk on how “autistic mice” are being characterized to yield a plethora of new information.  For me the highlight of her talk was hearing recordings of mouse “speech”. She shared a variety recordings and I was taken aback by the complexity and richness of the sounds, which left me yearning for an analysis of Rett mouse vocalizations.

After a lively cocktail hour it was back to work with dinner plates in hand. Drs. Zoghbi and Sheng divided the attendees into three working groups: 1) dysfunction of proteins of the synapse 2) dysfunction of nuclear/cytoplasmic proteins 3) young investigators and junior faculty.  Masquerading as a 30-something I happily joined the third group.  I was struck by the fearlessness and boldness of these young scientists. There were not shy about criticizing the status quo and what could be done differently to enhance the research progress. I came away feeling buoyed and reassured that science is in good hands with this new generation.

The following several hours of discussion, led by Rodney Samaco and Mingshan Xue and facilitated by NIMH Director, Tom Insel, were intellectually stimulating and entertaining. Below is a visual output of our intense discussion.

A few personal reflections on the symposium

  • Over and over again throughout the meeting I heard comments from autism researchers such as: “Where would we be without the syndromic autism animal models like Rett and Fragile X? We’ve learned so much from them”.  More than once I found myself thinking that as horrible as Rett is at least the genetics of the disorder are clear-cut – Rett’s silver lining.
  • The meeting provided an opportunity to meet some scientists with whom I had communicated by email and/or phone, but never met in person. People like Pat Levitt, Freda Miller and Michael Palfreyman.  It was a reminder of how many people over the years have taken the time to discuss their work and possible synergies to Rett Syndrome.
  • Drs. Zoghbi and Sheng kept everyone busy from the moment the meeting started to the moment we left, including an intense working dinner. I tend to do the same thing  at meetings that I organize, but always feel like I’m being a bit of a slave driver. Never again, however, will I feel guilty. If Dr. Zoghbi thinks it’s acceptable, then so do I!

Kudos to Drs. Zoghbi and Sheng for a stimulating meeting and thank you both for inviting me.

Science Translational Medicine, which co-organized the meeting, will be publishing a white paper on the proceedings.
RSRT will let you know when the paper is available.

The recently opened Jan and Dan Duncan Neurological Research Institute (NRI) in Houston, Texas is dedicated to scientific exploration of childhood neurological disorders. Director Huda Zoghbi, whose laboratory established that mutations in MECP2 cause Rett Syndrome, envisioned a center where researchers with diverse interests could work within an environment of ongoing, cross-disciplinary dialogue.  The soaring new structure is located in the heart of the Texas Medical Center, close to the basic science campus of Baylor College of Medicine and Texas Children’s Hospital.  At full capacity the NRI will provide laboratory facilities for 50 to 60 investigators.  All NRI investigators are Baylor College of Medicine faculty.

Jan and Dan Duncan Neurological Research Institute

Below are excerpts from a recent conversation between Dr. Zoghbi and Monica Coenraads, RSRT Executive Director.

MC: Dr. Zoghbi, it was wonderful to witness the recent opening of the NRI, the culmination of a lead fifty million dollar gift by the Duncans, an outpouring of support from the local community and years of work. The unique architecture reflects a specific functional goal: the creation of a powerful center for collaborative research on children’s neurological disorders.  In shepherding this concept from an idea to a most impressive reality, I know you were involved in every aspect of its development. Congratulations are in order! And now that this beautiful facility is open for business, tell us how the next steps are progressing.

HZ: I think there are really two phases now that are moving in parallel. One is the recruitment of talented faculty to occupy the laboratories of the first five floors that have been completed. The second will be to continue our expansion, which is being built by stimulus money and will hopefully be ready for additional recruits in 2012.

I know the physical layout of the building goes beyond its striking appearance.  You had a particular vision in mind.  In fact, you coined a new descriptive term: collaboratory.

Yes.  The design is specifically intended to promote and enhance interaction between investigators within the building, and communication with adjoining faculties.  We have tried to structure this within individual labs as well as the institution as a whole.  In an age where most people will text or send an e-mail message rather than walk across the hallway to talk to someone, we have arranged work areas that are conducive to actual conversation, and social spaces that invite and encourage movement and exchange.  Investigators with different areas of expertise will be able to access shared resources.  The collaboratory is a beautiful, very open glass tower, modeled after the DNA double helix; the stairwell is very spacious and pleasant.  People will be drawn here, moving from floor to floor to lunch, have a cappuccino, take a break, use the exercise machines, and in doing so will naturally be interacting with fellow scientists from labs on different stories.

So this collaboratory, this getting together people of different disciplines is still rather new, a kind of paradigm-changing shift from traditional science boundaries. As you recruit faculty, I imagine personality will have to play an equal role with intellectual excellence in considering a candidate.

Yes, it is really important that the scientists we recruit be generous and receptive.  Generous means they are willing to help and to share their ideas and contribute to others’ projects if their skills would be useful in a particular area. Receptive scientists are open to hearing input about their work.  These are very important qualities and are key for an interactive research environment; we dream of a generation of scientists who really cherish such a philosophy.  We are also establishing programs to help scientists transition to independence as soon as they are ready.  Toward this end we will be creating NRI fellowship positions, to give brilliant young PhD graduates (two per year) the opportunity to work within an unusually supportive and nurturing environment.  If their projects are successful, they will then be well positioned for highly competitive faculty appointments.

And this philosophy of the collaboratory is expanded even beyond the architecture of the new building, by the way the site was chosen.  I know the location was very critical to you.

The NRI is a Texas Children’s Hospital building, but I wanted it in a location where scientists from very different disciplines would have access to it.  I also wanted our own scientists to be only steps away from institutions where the focus and expertise are on scientific problems that are quite different from problems seen in childhood neurodevelopmental disorders.  For example, a researcher at Mitchell research building at MD Anderson (attached to NRI) who studies cancer and the epigenetics of cancer might make a discovery that has relevance to epigenetics in the nervous system.   You really don’t know where the breakthroughs will come from, and so this cross-cultivation of work and ideas from different institutions has great potential value.

Tell us about the potential of this approach to accelerate and validate new work.

If you know one technique very well, or even have multiple skills in one discipline, this is still not enough when you are trying to understand something as intricate as brain development and brain function.  Somebody might come here with expertise in basic synaptic biology and neurophysiology, but is very willing to engage and think about how they could maximize the impact of their work by collaborating with someone who might be studying a model of Rett Syndrome or Fragile X.  You truly need a great variety of specializations, including those from the physical sciences, to begin to tackle complex problems.  Even with all of the expertise you can begin to put together, these problems are still challenging.

The readers of this blog are of course interested in Rett Syndrome.  Can you speak about the kinds of resources that you envision being allocated for Rett research?

We’ve recruited eight faculty members so far, and one of our first recruits was somebody who works in Rett Syndrome, Jeff Neul.  In addition, we’ve really strengthened the physiology core.  Our colleagues in neuroscience are doing some work using two-photon imaging of cortical neurons in animal models of Rett, so the NRI has purchased equipment for these experiments. (Editor’s note: Two-photon imaging is a type of microscopy that allows researchers to look in depth at living tissue.)  Our behavioral core is designed to address the needs of large scale preclinical trials in Rett mouse models so we can expand the number of trials we do and expand our behavioral assays.  Some of our new recruits will be investigators who bring in a skill set to look at Rett from different angles.  Since Rett encompasses so many symptoms, the more we learn about it, the more we’ll gain knowledge that may be applicable to a very large range of neurological and neuropsychiatric disorders.

Along those lines, many children with neurological disorders suffer from seizures, chronic GI problems, and orthopedic issues.  The approach thus far has been to try to ameliorate symptoms, but often standard treatments don’t work well and they really don’t address the underlying causes.  Will existing faculty members or new recruits be focusing on looking more deeply into the mechanisms of these problems across different diagnoses?

HZ: Yes, absolutely.  One of the ways information will be exchanged at the NRI will be through series of regularly scheduled seminars, and some of these will focus on a specific symptom. We bring together clinicians with basic scientists, presenting problems from both points of view. We will invite GI experts, bone experts.  The very serious problem of uncontrolled epilepsy may be the first topic we explore in this way. A symposium on this topic is currently in the planning stage.

And this leads into the situation of children who have symptoms but no diagnosis. There are girls who have a clinical diagnosis of Rett but no MECP2 mutations have been found for them. Will the NRI be a resource for these families?

Sequencing costs are coming down, so it’s feasible to look not only at the children but the parents as well. We are beginning an initiative between our NRI investigators and the genome center to do large-scale medical sequencing for these patients.

Mark Wallace (President and CEO of Texas Children's Hospital), Jan Duncan, Huda Zoghbi, Cynthia and Tony Petrello

MC: On all fronts, then, the NRI is gearing up: Creative collaborative strategies, fresh angles of approach, in-depth examination of the symptoms that children suffer from in Rett and many other neurological disorders, and genomic investigation. You are really launching a powerful new interdisciplinary model for 21st century medical research. Thank you so much for your dedication to Rett research all these years, and for this interview. We hope to check in with you periodically for updates and anticipate great work from the Institute.


To continue our two-part interview with Huda Zoghbi, MD, we have just added these topics to our interview page:

  • Jan and Dan Duncan Neurological Research Institute (NRI)
  • Rett Syndrome and autism

Dr. Zoghbi has recently been appointed as Director of NRI which upon completion in 2010 will be the world’s first comprehensive children’s neurological center.