You are currently browsing the tag archive for the ‘X chromosome’ tag.

Monica Coenraads interviews Michael Green, MD, PhD of the UMASS School of Medicine about his newly published paper in Proceedings of the National Academy of Sciences.  The work was funded, in part, by RSRT.  He has identified a number of genes that when disrupted can reactivate the silenced X chromosome in females. Some of these genes lie in pathways that are druggable which makes this work potentially clinically relevant not only for Rett Syndrome but also for other X-linked disorders.

Prof. Green’s paper was covered by SFARI.org. in an article written by Jessica Wright.


Rousing silenced X chromosome may treat Rett syndrome

Drugs that activate the silent copy of the X chromosome in women may be able to undo the damage from mutations in genes located there. The study, published 2 September in Proceedings of the National Academy of Sciences, offers hope for treating Rett syndrome and other disorders linked to the chromosome1.

One copy of the two X chromosomes women carry is randomly silenced in each cell of the body. This occurs when the chromosome makes small pieces of RNA, called X-inactive specific transcript, or Xist. A cloud of Xist coats the chromosome and blocks its expression.

Female mice lacking Xist die in utero, so X inactivation was thought to be required for survival. The new study suggests otherwise.

The researchers identified 13 genes required for X inactivation. Female mice missing STC1, one of these genes, show expression of genes from both copies of X and have no obvious symptoms.

“The mouse findings suggest that you might be able to survive without X chromosome inactivation,” says lead researcher Michael Green, professor of molecular medicine at the University of Massachusetts Medical School.

Continue reading

by Monica Coenraads

Anyone who knows anything about Rett Syndrome knows that the disorder is primarily seen in girls. The disorder is caused by disruption of the MECP2 gene located on the X chromosome. Girls have two X chromosomes one with the disrupted gene and one with the healthy gene. Having some healthy MeCP2 protein allows girls to survive but at the expense of severe impairment that comes with Rett.

1623703_516732648427830_2098385048107441333_n

Since boys only have the one X chromosome they have no healthy MECP2 at all. These boys typically have a more severe form of the disease and often die in early childhood. (There are genetic situations that allow boys to present like classic girls with Rett, for example if they have Klinefelter Syndrome which gives them two Xs.)

The fact that boys only have one X is the reason most often given for why Rett is seen in girls. However this is not accurate. While having the sole X is the reason boys often succumb to the disease it is NOT the reason why Rett is primarily a woman’s disease. That reason has to do with where the MECP2 mutation originates.

Many studies over the past decade have provided evidence that the vast majority of MECP2 mutations originate in the sperm. Since fathers give an X to their daughters and a Y chromosome to their sons the MECP2 mutation can only be transmitted from father to daughter. This is the reason why Rett is seen primarily in girls.

y-chromosome

Boys, on the other hand, get their MECP2 mutations from their mother, a situation that arises only rarely. (Mutations can also originate in a single cell as the male embryo is developing.)

Scientific papers over the years have hypothesized that because male fetuses only have one X their disease would be so severe that they might not even develop to full term and the mothers might miscarry. There is no clinical data to support this hypothesis whatsoever.

Due to the sheer volume of sperm that is continuously made it is likely that all men produce sperm with MECP2 mutations. One in about 20,000 eggs will be fertilized with a sperm that has an MECP2 mutation in it – the cruel reality of genetic roulette.